Search by

Multivariable Calculus (Paper)

by Jon Rogawski, University of California, Los Angeles

Table of Contents

Multivariable Calculus (Paper)

First Edition ©2008

ISBN-10: 1-4292-1069-9
ISBN-13: 978-1-4292-1069-0
Paper Text, 600 pages

See available formats »


Authors

Chapter 11 INFINITE SERIES
    11.1 Sequences
    11.2 Summing an Infinite Series
    11.3 Convergence of Series with Positive Terms
    11.4 Absolute and Conditional Convergence
    11.5 The Ratio and Root Tests
    11.6 Power Series
    11.7 Taylor Series
    
  Chapter 12 PARAMETRIC EQUATIONS, POLAR COORDINATES, AND CONIC SECTIONS
    12.1 Parametric Equations
    12.2 Arc Length and Speed
    12.3 Polar Coordinates
    12.4 Area and Arc Length in Polar Coordinates
    12.5 Conic Sections
    
  Chapter 13 VECTOR GEOMETRY
    13.1 Vectors in the Plane
    13.2 Vectors in Three Dimensions
    13.3 Dot Product and the Angle Between Two Vectors
    13.4 The Cross Product
    13.5 Planes in Three-Space
    13.6 Survey of Quadric Surfaces
    13.7 Cylindrical and Spherical Coordinates
    
  Chapter 14 CALCULUS OF VECTOR-VALUED FUNCTIONS
    14.1 Vector-Valued Functions
    14.2 Calculus of Vector-Valued Functions
    14.3 Arc Length and Speed
    14.4 Curvature
    14.5 Motion in Three-Space
    14.6 Planetary Motion According to Kepler and Newton
    
  Chapter 15 DIFFERENTIATION IN SEVERAL VARIABLES
    15.1 Functions of Two or More Variables
    15.2 Limits and Continuity in Several Variables
    15.3 Partial Derivatives
    15.4 Differentiability, Linear Approximation,and Tangent Planes
    15.5 The Gradient and Directional Derivatives
    15.6 The Chain Rule
    15.7 Optimization in Several Variables
    15.8 Lagrange Multipliers: Optimizing with a Constraint
    
  Chapter 16 MULTIPLE INTEGRATION
    16.1 Integration in Several Variables
    16.2 Double Integrals over More General Regions
    16.3 Triple Integrals
    16.4 Integration in Polar, Cylindrical, and Spherical Coordinates
    16.5 Change of Variables
    
  Chapter 17 LINE AND SURFACE INTEGRALS
    17.1 Vector Fields
    17.2 Line Integrals
    17.3 Conservative Vector Fields
    17.4 Parametrized Surfaces and Surface Integrals
    17.5 Surface Integrals of Vector Fields
    
  Chapter 18 FUNDAMENTAL THEOREMS OF VECTOR ANALYSIS
    18.1 Green’s Theorem
    18.2 Stokes’ Theorem
    18.3 Divergence Theorem

INSTRUCTOR:

View package options »Pricing

Our Retail Price to students: $90.95
Wholesale price to bookstores: $75.00

STUDENT PRICE: $90.95



 
Enjoy free shipping on orders over $40

Enter coupon code FREESHIP13 at checkout for free ground shipping on orders over $40. Offer applies to orders placed on this site only.